孟加拉湾的季节性环流

孟加拉湾的季节性环流

论文摘要

卫星海洋学和海洋观测的进展为印度洋的环流模态及其变化提供了新的认识。孟加拉湾位于印度洋的东北部,被西部的斯里兰卡和印度、北部的孟加拉国、东部的缅甸、及东部的安达曼和尼科巴群岛所围绕,并将安达曼岛与海岸隔开。其最显著的特征是海湾季风的季节性逆转。没有温带和极地地区是其另一个特点。海湾季节性环流会随着季风周期、严重的气旋低压和次大陆上的风暴而变化。由于强化的西边界流及方向每年改变两次,西部海域部分出现高流速的再循环流,对环流和水文产生深远的影响。最近先进的卫星测高数据可用于确定海流和环流模态的变化。然而,学界对季节性变化的环流模态进行的研究仍然有限。本研究的目的是寻找随时间变化的海流、海流模态及其影响参数的季节性变化。观测研究是基于过去10年收集的卫星”多普勒”、浮标的观测、水文巡航以及卫星跟踪漂流浮标的数据。这些数据是从最近完善的观测数据中获取的,并拥有大量数据点描述季节内环流模态的变化。与过去的观测结果不同,它们定性地解释了季节内的海流。正如这些观测表明的那样,海湾北部是在陆架斜坡上内潮发展的高活跃区域之一。这个地区的风每年反转两次,夏季为西南风,冬季为东北风。海湾受到这些风的风应力的影响,导致靠近印度东岸的海域分别出现上升流和下降流。根据孟加拉湾的观测研究,地表环流和中尺度变异性发生了显著而明显的变化。从收集到的数据集和以前的初步观测来看,沿海海域的估计流速变化很小。新的观测数据显示,局地沿岸风和艾克曼抽吸是海流变化的主要因素。从2014至2016,观测到高达2.25米/秒的表层流,大于0.4-0.8米每秒的海流被限制在150-200米以浅的上层。基于局地风的尺度模拟还表明,局地海流影响了沿海海域。这清楚地表明,这些模态的变化出现自安达曼东部,那里的水在5月份比较温暖,盐分很高。来自南方的变化包括冷的深层水和温暖的表层水之间的混合。这澄清了 11月和12月,剧烈变化的河流径流影响到盐度水平,这种影响到海岸是稳定的。除了沿岸开尔文波,西向传播的罗斯比波调节着东部和中部海湾。这项观测研究还调查了影响季节性平均风速和显著海浪高度的海面温度时间上的变化。从新的观测结果中分析的模态显示出印度洋东北部具有季节性变化的复杂海流。新的先进海洋学观测技术揭示了平均变化的内在特征。他们在重新分析和计算综合数据集的帮助下,提供了季节性海流变化模态的新纪录。观察到孟加拉湾的变化,对在季节性变化的气候情景中沿海过程的变化产生了一些实际影响。

论文目录

  • Abbreviations
  • 摘要
  • Abstract
  • Chapter 1 Introduction
  •   1.1 Research Background
  •   1.2 Literature Review
  •   1.3 Currents in the Tropical Indian Ocean
  •   1.4 Ocean Current Observations
  •   1.5 Process of Ocean Dynamics
  •   1.6 Statement of the Problem
  •   1.7 Research Significance
  •   1.8 Research Objectives
  •   1.9 Research Outline
  • Chapter 2 Research Methods
  •   2.1 Observations
  •     2.1.1 Cruise Reports and Cruise Track
  •     2.1.2 Sampling Points and Observations
  •     2.1.3 Sequence of Events
  •     2.1.4 Multi Scale observations in Near-surface area
  •     2.1.5 Performance of the Ship and Equipment's
  •     2.1.6 Study Observation
  •   2.2 Mixing Measurements in the Bay of Bengal
  •   2.3 Analysis Methods
  •   2.4 Summary
  • Chapter 3 The Characteristics of Ocean Currents and Trends
  •   3.1 Introduction
  •     3.1.1 The Significance of Currents
  •     3.1.2 Source of Ocean Currents
  •     3.1.3 Effect of Wind driven current
  •     3.1.4 Effects of Undercurrents
  •     3.1.5 Marine Life
  •   3.2 General Pattern of Currents in Indian Ocean
  •     3.2.1 Global Impact
  •     3.2.2 Changes of Currents in Indian Ocean with time series and ocean current phenomena
  •   3.3 Physical Processes of Currents
  •   3.4 Change of Currents in Annual
  •   3.5 Seasonal Changes and Long Trend Variations
  •   3.6 The Reprocessed Data and Buoys Measurement
  •   3.7 Summary
  • Chapter4 Dynamics of Currents and Influencing Factors
  •   4.1 Retreating dynamics of Indian Ocean North-East Monsoons
  •   4.2 Indian Ocean Winter Monsoons and affecting factors
  •   4.3 Differences in Currents related to Salinity and Density
  •   4.4 Ocean Eddies and rings
  •   4.5 Thermal Structure of Bay of Bengal
  •   4.6 Sea Surface Temperature of the Indian Ocean
  •   4.7 Change in Seasonal and Sub-seasonal SST Variation
  •   4.8 The Variations of Wind and Waves in Seasonal and Annual
  •   4.9 Effects of Seasonal Oscillations in Internal Tides
  •   4.10 Temperature Inconsistency and Vertical statistics
  •   4.11 Summary
  • Chapter 5 Summary and Conclusion
  •   5.1 Study analysis
  •   5.2 Seasons Summary and Conclusion of study
  •   5.3 Technology and Future Innovations
  • Acknowledgements
  • Reference
  • 文章来源

    类型: 硕士论文

    作者: Karapu Manikanta

    导师: 张文舟

    关键词: 孟加拉湾,环流模态,季节变化,水文

    来源: 厦门大学

    年度: 2019

    分类: 基础科学

    专业: 海洋学

    单位: 厦门大学

    分类号: P731.27

    总页数: 117

    文件大小: 13063K

    下载量: 10

    相关论文文献

    • [1].Contribution of surface wave-induced vertical mixing to heat content in global upper ocean[J]. Journal of Oceanology and Limnology 2020(02)
    • [2].A novel algorithm for ocean wave direction inversion from X-band radar images based on optical flow method[J]. Acta Oceanologica Sinica 2018(03)
    • [3].Evolving paradigms in biological carbon cycling in the ocean[J]. National Science Review 2018(04)
    • [4].Untangling the role that microbes play in ocean carbon cycle—A new paradigm in marine biogeochemistry[J]. Science China(Earth Sciences) 2017(02)
    • [5].The first quantitative remote sensing of ocean internal waves by Chinese GF-3 SAR satellite[J]. Acta Oceanologica Sinica 2017(01)
    • [6].The first quantitative ocean remote sensing by using Chinese interferometric imaging radar altimeter onboard TG-2[J]. Acta Oceanologica Sinica 2017(02)
    • [7].Effects of different freshwater flux representations in an ocean general circulation model of the tropical Pacific[J]. Science Bulletin 2017(05)
    • [8].Sound transmission from air into deep ocean through rough sea surfaces by small slope approximation[J]. Chinese Journal of Acoustics 2016(04)
    • [9].INFORMATION FOR AUTHORS[J]. Advances in Atmospheric Sciences 2017(05)
    • [10].Dake Chen:unraveling the secrets of ocean–climate interaction[J]. National Science Review 2017(01)
    • [11].China Argo project: progress in China Argo ocean observations and data applications[J]. Acta Oceanologica Sinica 2017(06)
    • [12].An ocean current inversion accuracy analysis based on a Doppler spectrum model[J]. Acta Oceanologica Sinica 2017(09)
    • [13].Generation and propagation of internal wave and its interaction with ocean structures[J]. Science Foundation in China 2017(03)
    • [14].South China Sea: the gateway to China's deep-sea ambitions[J]. National Science Review 2017(04)
    • [15].没有水的海洋(英文)[J]. 英语画刊(高级版) 2017(02)
    • [16].TROPICAL CYCLONE UNUSUAL INTENSITY AND STRUCTURE CHANGE IN THE WESTERN NORTH PACIFIC OBSERVED BY RECONNAISSANCE AIRCRAFT DURING TPARC/TCS08 AND ITOP/TCS10[J]. Tropical Cyclone Research and Review 2012(01)
    • [17].SIMULATION OF OCEAN RESPONSES TO AN IDEALIZED LANDFALLING TROPICAL CYCLONE USING A COUPLED ATMOSPHERE-WAVE-OCEAN MODELING SYSTEM[J]. Tropical Cyclone Research and Review 2012(03)
    • [18].Status of testing field for ocean energy generation[J]. Journal of Modern Power Systems and Clean Energy 2017(02)
    • [19].Ocean Observation from Haiyang Satellites[J]. 空间科学学报 2020(05)
    • [20].Roles of different physical processes in upper ocean responses to Typhoon Rammasun(2008)-induced wind forcing[J]. Science China(Earth Sciences) 2019(04)
    • [21].Simulated effects of interactions between ocean acidification,marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles[J]. Science China(Earth Sciences) 2018(06)
    • [22].A Real-Time Photo-Realistic Rendering Algorithm of Ocean Color Based on Bio-Optical Model[J]. Journal of Ocean University of China 2016(06)
    • [23].Hydrodynamic consideration in ocean current turbine design[J]. Journal of Hydrodynamics 2016(06)
    • [24].Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model[J]. Acta Oceanologica Sinica 2017(05)
    • [25].A numerical investigation into the long-term behaviors of Fukushima-derived ~(137)Cs in the ocean[J]. Acta Oceanologica Sinica 2015(12)
    • [26].An efficient parallel algorithm for ocean circulation numerical model based on irregular rectangle decomposition scheme[J]. Acta Oceanologica Sinica 2016(05)
    • [27].Evaluation of ocean tide loading effects on GPS-estimated precipitable water vapour in Turkey[J]. Geodesy and Geodynamics 2016(01)
    • [28].Cooperative path planning for multi-AUV in time-varying ocean flows[J]. Journal of Systems Engineering and Electronics 2016(03)
    • [29].Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation[J]. Advances in Climate Change Research 2014(03)
    • [30].沙钱(英文)[J]. 英语画刊(高级版) 2020(14)

    标签:;  ;  ;  ;  

    孟加拉湾的季节性环流
    下载Doc文档

    猜你喜欢