遥感技术在地质找矿中的应用

遥感技术在地质找矿中的应用

辽宁省第八地质大队117000

摘要:遥感地质找矿方法随着遥感成像技术的发展而进步,传感器的发展使得探测波段不断细分,光谱分辨率不断提高,从而提高了遥感地质找矿的精度,使地质找矿从定性化到定量化转变。本文总结近几十年来多光谱与高光谱遥感成像技术的发展过程,并概括在此发展过程中相关找矿方法的发展,从多光谱成像与高光谱成像的发展2个方面介绍了相应的找矿方法与找矿应用,论述遥感技术在地质找矿中的应用趋势,并对目前遥感找矿领域中的相关难点进行了总结。

关键词:遥感技术;地质找矿;直接应用;间接应用

前言

遥感是指运用现代技术和先进工具,不与目标接触而直接从远距离接收目标物体电磁波谱信息,通过传输、存储和处理,对信息进行分析与解译的一门新兴的综合性科学技术,是一种快速、有效的大范围信息获取技术。过去的30-40年间,随着多光谱技术的开发与成像光谱仪的研制成功,遥感实现了从多光谱到高光谱甚至超高光谱的发展,同时也向定量化、精细化和智能化方向演进。遥感数据具有时实性高、覆盖范围广、信息丰富客观等优点,已经被广泛应用于各个领域。自20世纪70年代起,学者深入研究了岩石矿物的光谱特征以及处理技术,为遥感矿产信息提取、使用遥感方法直接识别矿物、计算矿物含量、分析化学成分以及分析矿物内部晶体结构奠定了理论基础。目前,利用遥感数据进行地质找矿的相关技术已日趋成熟。遥感技术在地质找矿中的应用包括直接应用和间接应用:直接应用是指遥感蚀变信息的提取,间接应用则包括地质构造信息、植被的光谱特征及矿床改造信息等方面。

1遥感技术找矿的直接应用

岩浆热液或汽水热液使围岩的结构、构造和成分发生改变的地质作用称为围岩蚀变。围岩蚀变是成矿作用的产物,围岩蚀变的种类(组合)与围岩成分、矿床类型有一定的内在联系,围岩蚀变的范围往往大于矿化的范围,而且不同的蚀变类型与金属矿化在空间分布上常具规律可循。因此,围岩蚀变可作为有效的找矿标志。

与地物发生反射、透射等作用的电磁波是地物信息的载体,地物的光谱特性与其内在的物理化学特性紧密相关,物质成分和结构的差异造成物质内部对不同波长光子的选择性吸收和反射。具有稳定化学组分和物理结构的岩石矿物具有稳定的本征光谱吸收特征,光谱特征的产生主要是由组成物质的内部离子、基团的晶体场效应或基团的振动效果引起的。各种矿物都有自己独特的电磁辐射,利用波谱仪对野外采样进行光谱曲线测量,根据实测光谱与参考资料库中的参考光谱进行对比,可以确定出样品的吸收谷,识别出矿物组合。根据曲线的吸收特征,选择合适的图像波段进行信息提取。

根据量子力学分子群理论,物质的光谱特征为各组成分子光谱特征的简单叠加。传感器在空中接收地表物质的光谱特性,因为探测范围内有干扰介质存在(白云、大气、水体、阴影、植被、土壤等)。因此,在进行蚀变矿物信息提取时,根据干扰物质的光谱曲线出发,进行预处理消除干扰。主要造岩矿物成分(O,Si,Al,Mg)的振动基频在可见-近红外区不产生诊断性吸收谷的谱带。不同类型的矿物蚀变会引起Fe2+,Fe3+,OH-,中某一类的变化,Fe2+,Fe3+,OH-,在可见-近红外区可产生岩石谱带中的不同吸收谷组合,例如,在0.4~1.3μm范围内的光谱特性是因为矿物晶格结构中的Fe,Cu等过渡性金属元素的电子跃迁引起的;1.3~2.5Lm的光谱特性是由矿物组成中的,OH-和H2O引起的。根据吸收谷所处的波长位置、深度、宽度、对称性等特征进行处理,提取相应的蚀变遥感异常(遥感异常)。现在应用的数据有多光谱TM,ETM+,ASTER数据以及少量的高光谱与微波遥感数据等。蚀变遥感信息在整景图像上信息占有份额低,但局部地区的信息并不微弱,因此即使是微弱的蚀变异常也可以被检测出,试验证明,遥感信息检测的蚀变检出下限优于1/20000。目前遥感找矿蚀变异常信息的提取有多种方法,例如波段比值法、主成分分析法、光谱角识别法和MPH技术、混合象元分解等[1]。

2.遥感技术间接找矿的应用

2.1地质构造信息的提取

内生矿产在空间上常产于各类地质构造的边缘部位及变异部位,重要的矿产主要分布于板块构造不同块体的结合部或者近边界地带,在时间上一般与地质构造事件相伴而生,矿床多成带分布,成矿带的规模和地质构造变异大致相当。遥感找矿的地质标志主要反映在空间信息上。从与区域成矿相关的线状影像中提取信息(主要包括断裂、节理、推覆体等类型),从中酸性岩体、火山盆地、火山机构及深部岩浆、热液活动相关的环状影像提取信息(包括与火山有关的盆地、构造),从矿源层、赋矿岩层相关的带状影像提取信息(主要表现为岩层信息),从与控矿断裂交切形成的块状影像及与成矿有关的色异常中提取信息(如与蚀变、接触带有关的色环、色带、色块等)。当断裂是主要控矿构造时,对断裂构造遥感信息进行重点提取会取得一定的成效。

遥感系统在成像过程中可能产生模糊作用,常使用户感兴趣的线性形迹、纹理等信息显示得不清晰、不易识别。人们通过目视解译和人机交互式方法,对遥感影像进行处理,如边缘增强、灰度拉伸、方向滤波、比值分析、卷积运算等,可以将这些构造信息明显地突现出来。除此之外,遥感还可通过地表岩性、构造、地貌、水系分布、植被分布等特征来提取隐伏的构造信息,如褶皱、断裂等。提取线性信息的主要技术是边缘增强[2]。

2.2植被波谱特征的找矿意义

在微生物以及地下水的参与下,矿区的某些金属元素或矿物引起上方地层的结构变化,进而使土壤层的成分产生变化,地表的植物对金属具有不同程度的吸收和聚集作用,影响植物叶体内叶绿素、含水量等的变化,导致植被的反射光谱特征有不同程度的差异。矿区的生物地球化学特征为在植被地区的遥感找矿提供了可能,可以通过提取遥感资料中由生物地球化学效应引起的植被光谱异常信息来指导植被密集覆盖区的矿产勘查,较为成功的是广东省河台金矿的遥感找矿、黔东南地区金矿遥感信息提取。不同植被以及同种植被的不同器官间金属含量的变化很大,因此需要在已知矿区采集不同植被样品进行光谱特征测试,统计对金属最具吸收聚集作用的植被,把这种植被作为矿产勘探的特征植被,其他的植被作为辅助植被。遥感图像处理通常采用一些特殊的光谱特征增强处理技术,采用主成分分析、穗帽变换、监督分类(非监督分类)等方法。植被的反射光谱异常信息在遥感图像上呈现特殊的异常色调,通过图像处理,这些微弱的异常可以有效地被分离和提取出来,在遥感图像上可用直观的色调表现出来,以这种色调的异同为依据来推测未知的找矿靶区。植被内某种金属成分的含量微小,因此金属含量变化的检测受到谱测试技术灵敏度的限制,当金属含量变化微弱时,现有的技术条件难以检测出,检测下限的定量化还需进一步试验。理论上讲,高光谱提取植被波谱的性能要优于多光谱很多倍[3]。

2.3矿床改造信息标志

矿床形成以后,由于所在环境、空间位置的变化会引起矿床某些性状的改变。利用不同时相遥感图像的宏观对比,可以研究矿床的剥蚀改造作用;结合矿床成矿深度的研究,可以对类矿床的产出部位进行判断。通过研究区域夷平面与矿床位置的关系,可以找寻不同矿床在不同夷平面的产出关系及分布规律,建立夷平面的找矿标志。另外,遥感图像还可进行岩性类型的区分应用于地质填图,是区域地质填图的理想技术之一,有利于在区域范围内迅速圈定找矿靶区。

3.结语

总而言之,遥感技术在地质找矿中的应用必须以现代成矿理论为指导,结合实际情况,选择适当的工作方法,建立健全遥感地质找矿系统,从而实现遥感找矿的目的。相关工作人员要对遥感找矿技术进行认真分析和对待,结合相应的措施,对其进行完善,推动遥感技术在地质找矿中的应用和发展。

参考文献

[1]余先川,熊利平,张立保,等.遥感技术在地质找矿中的应用[J].地质学刊,2015,39(2):263-276.

[2]邵博深,甘星星.遥感技术在地质找矿中的应用[J].低碳世界,2016(25):81-82.

[3]钱建平,伍贵华,陈宏毅.现代遥感技术在地质找矿中的应用[J].地质找矿论丛,2012,27(3):355-360.

标签:;  ;  ;  

遥感技术在地质找矿中的应用
下载Doc文档

猜你喜欢